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Abstract
In this paper, we discuss local averages of the energy density for the non-
minimally coupled scalar quantum field, extending a previous investigation
of the classical field. By an explicit example, we show that such averages are
unbounded from below on the class of Hadamard states. This contrasts with the
minimally coupled field, which obeys a state-independent lower bound known
as a quantum energy inequality (QEI). Nonetheless, we derive a generalized
QEI for the non-minimally coupled scalar field, in which the lower bound
is permitted to be state-dependent. This result applies to general globally
hyperbolic curved spacetimes for coupling constants in the range 0 < ξ � 1/4.
We analyse the state dependence of our QEI in four-dimensional Minkowski
space and show that it is a non-trivial restriction on the averaged energy density
in the sense that the lower bound is of lower order, in energetic terms, than the
averaged energy density itself.

PACS number: 04.62.+v

1. Introduction

For more than 30 years it has been known that the stress–energy tensor of the classical scalar
field, obtained from the Lagrangian

L[φ, g] = 1
2 (∇φ)2 − 1

2 (m2 + ξR)φ2 (1)

does not satisfy the weak energy condition (WEC) at non-minimal coupling, i.e., ξ �= 0 (see
[1, 2] for a simple example in Minkowski space). Naturally, this raises the question of whether
there are any restrictions on the extent of WEC violation and whether this field could support
exotic phenomena (e.g., violations of the second law of thermodynamics) that depend on
macroscopic spacetime regions of negative energy density.

We showed in [3] that under certain conditions one can find lower bounds for local
averages of the energy density of the classical non-minimally coupled scalar field. This paper
extends our analysis to the case of the quantized field.
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As is well known, quantum field theories obeying the Wightman axioms necessarily
violate the WEC [4] and in this respect, the non-minimally coupled scalar field resembles
the situation at minimal coupling. However, as we show, there are differences. For example,
consider the case where ξ > 0. Given any bounded subset O of Minkowski space and an
arbitrary constant ρ0 > 0 we will construct a Hadamard state � in which the expected energy
density 〈ρ〉� is less than −ρ0 throughout O. Therefore, non-trivial local averages of the energy
density, 〈ρ(f)〉� , where f is a non-negative test function, are unbounded from below on the
class of Hadamard states.

By contrast, expectation values of the averaged energy density of the minimally coupled
scalar field are bounded from below on the class of Hadamard states [5]. The latter bound,
known as a quantum energy inequality (QEI), can be written in the form

〈ρ(f)〉� � −Q̃(f) (2)

for all Hadamard states �, where Q̃(f) is a constant (see [6–8] for reviews and further
references concerning such QEIs). Clearly, the non-minimally coupled field cannot satisfy a
QEI of this type. However, we will show that it obeys a generalized QEI of the form

〈ρ(f)〉� � −〈Q(f)〉� (3)

for all Hadamard states �, where Q(f) is now allowed to be an unbounded operator, which
turns out to involve the Wick square of the field. This bound will be proved for averaging
along time-like geodesics in general globally hyperbolic spacetimes. Precise statements and
the proof are given in section 4. State-dependent QEIs (and related results) have recently been
studied in an abstract context by one of us [9], in which they are naturally suggested by the
mathematical framework. This paper complements that work by giving a concrete example of
a quantum field which admits a state-dependent bound but cannot admit a state-independent
one.

The state-dependent nature of the lower bound raises an important question. It is clear
that setting Q(f) = −ρ(f) would provide a rather trivial inequality of the above type. Are our
bounds similarly trivial? In section 5, we will analyse this question in two ways. The first is
based on a proposal in [9], in which a QEI would be declared trivial if there exist constants c
and c′ such that

|〈ρ(f)〉� | � c + c′|〈Q(f)〉� | (4)

for all Hadamard �. We will show that our bound is non-trivial in this sense by considering
finite-temperature states in Minkowski space. The second way uses so-called H-bounds: we
show that Q(f) can be bounded by any power of the Hamiltonian greater than 2, while ρ(f)

cannot be bounded by powers less than 3.1 Thus, although the lower bound is state-dependent,
it is more stringent in energetic terms than any upper bound on the averaged energy density:
one may say that the Q(f) is of lower order than ρ(f). In particular, states that exhibit large
negative energy densities over extended spacetime regions necessarily have large positive
overall energy. Further comments on the significance of our results are given in section 6.

2. The non-minimally coupled field

We begin by recalling the definition of the non-minimally coupled scalar field, its quantization
and the construction of the stress–energy tensor. This will serve to fix our conventions.

1 The power of 3 emerges by considering a particular family of states, and it may be that ρ(f) can only be bounded
by powers of at least 4, as would be natural on dimensional grounds. See section 5.2 for more discussion.
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The classical Lagrangian describing the field on a n-dimensional spacetime2 M = (M, g)

is given by (1), where m, ξ are real constants and R is the Ricci scalar with respect to the
metric g. The constant ξ is called the coupling constant. If ξ = 0, the field is said to be
minimally coupled. For ξ = (n − 2)/(4n − 4) and ξ = 1/4, one speaks of conformal and
supersymmetric coupling, respectively. In this paper, we will focus on values ξ ∈ [0, 1/4],
which clearly contains all the special values just mentioned. The Lagrangian (1) leads to the
wave equation

Pξφ = 0, (5)

where Pξ := �g + (m2 + ξR) is the Klein–Gordon operator and �g is the d’Alembertian
with respect to the metric g. We will follow the standard convention and denote the space of
compactly supported, smooth, complex-valued functions on M by D(M). Assuming that the
spacetime is globally hyperbolic, there is an antisymmetric bi-distribution Eξ(x, y) which is
the difference of the advanced and retarded Green functions.

The theory is quantized by introducing a unital *-algebra Aξ (M), which is generated
by objects �(f ) (f ∈ D(M)) subject to the relations that (a) the map f → �(f ) is
complex linear; (b) �(f )∗ = �(f ); (c) �(Pξf ) = 0; (d) [�(f ),�(h)] = iEξ(f, h)11 for all
f, h ∈ D(M). Properties (c) and (d) enforce the field equation and the canonical commutation
relations, respectively. In this framework, states are positive and normalized linear functionals
〈·〉� → C on the algebra Aξ (M). In particular, we will be interested in Hadamard states:
in such a state �, the two-point function ω�

2 (x, y) = 〈�(x)�(y)〉� is a distribution with a
prescribed singularity structure so that the difference between the two-point functions of any
two Hadamard states is smooth. See [12] and references therein, for details on Hadamard
states. Some of our later results will be based on a characterization of the Hadamard states in
terms of microlocal analysis due to Radzikowski [13].

We now turn to the problem of quantizing quadratic classical expressions of the form
Gclass(x) = [∑

i D̂i(φ⊗φ)
]
c
(x), where the D̂i are linear differential operators on C∞(M×M)

with smooth coefficients and [·]c(x) denotes the ‘coincidence limit’ [F ]c(x) := F(x, x), of
any smooth function F ∈ C∞(M × M). The quantized normal ordered form of Gclass in the
Hadamard state � is then defined by

〈Gquant〉�(x) =
[∑

i

D̂i :ω
�
2 :

]
c

(x), (6)

where :ω�
2 : = ω�

2 − ω0
2 is the normal ordering of ω�

2 with respect to a reference Hadamard
state ω0. In Minkowski space one has the distinguished vacuum state � and therefore one
usually chooses ω0

2 = ω�
2 . In all quasi-free representations, normal ordering coincides with

Wick normal ordering of annihilation and creation operators.
The classical stress–energy tensor of the non-minimally coupled scalar field can be

calculated by varying the action of the Lagrangian (1) with respect to the metric, and takes the
form

T class
µν = (∇µφ)(∇νφ) + 1

2gµν(m
2φ2 − (∇φ)2) + ξ(gµν�g − ∇µ∇ν − Gµν)φ

2, (7)

where Gµν is the Einstein tensor. The term proportional to the coupling constant ξ originates
in the variation of the coupling term in the Lagrangian density. In a Ricci-flat spacetime,
the differential operators in (7) proportional to ξ are still present. So minimal coupling and
vanishing Ricci scalar result in the same wave equation but in a different stress–energy tensor.

2 Our sign conventions are those of Birrell and Davies [10], i.e., the [−,−, −] convention in the classification scheme
of Misner, Thorne and Wheeler [11].
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To quantize (7) in the way we introduced above, we need to bring it into the form used in
(6). This can be done with the definition of the Klein–Gordon operator Pξ . One finds that

T class
µν = (1 − 2ξ)(∇µφ)(∇νφ) + 1

2 (1 − 4ξ)gµν(m
2φ2 − (∇φ)2)

− 2ξ
(
φ∇µ∇νφ + 1

2Rµνφ
2 − 1

4 (1 − 4ξ)gµνRφ2 − gµνφPξφ
)
. (8)

The last term in the bottom line vanishes ‘on shell’, that is for φ satisfying the wave
equation (5).

We shall often study the energy density of (8) with respect to freely falling observers.
Assume that γ is a time-like geodesic parameterized by proper time3, i.e., γ̇ 2 = 1 and
∇γ̇ γ̇ = γ̇ µ∇µγ̇ = 0. Using this, together with (8), one can show that the classical energy
density ρclass

φ = T class
µν γ̇ µγ̇ ν on γ is

ρclass
φ = (1 − 2ξ)(∇γ̇ φ)2 + 1

2 (1 − 4ξ)(m2φ2 − (∇φ)2)

− 2ξ
(
φ∇2

γ̇ φ + 1
2Rµνγ̇

µγ̇ νφ2 − 1
4 (1 − 4ξ)Rφ2 − φPξφ

)
. (9)

Now let T be an open tubular neighbourhood of γ . Take a family of smooth vector fields
{vi}i=0,...,n−1 on T , whose restriction to γ is a vielbein with the property that v0|γ = γ̇ , so we
have gµν |γ = v

µ

0 vν
0 − ∑n−1

i=1 v
µ

i vν
i . We now introduce the operators

ρ̂1 = 1

2

(∇v0 ⊗ ∇v0

)
+

1

2
(1 − 4ξ)

(
m2(11 ⊗ 11) +

n−1∑
i=1

(∇vi
⊗ ∇vi

))
, (10)

ρ̂2 = 2
(
11 ⊗s ∇2

v0

)
, (11)

ρ̂3 = −(
11 ⊗s Rµνv

µ

0 vν
0

)
11
)

+
1

2
(1 − 4ξ) (11 ⊗s R11) + 2(11 ⊗s Pξ ). (12)

Here, ⊗s is the symmetrized tensor product, i.e., P ⊗s P ′ = {(P ⊗P ′)+ (P ′ ⊗P)}/2. Having
introduced these operators, one finds that

ρclass
φ = [ρ̂(φ ⊗ φ)]c , (13)

ρ̂ = ρ̂1 − ξ ρ̂2 + ξ ρ̂3. (14)

Note that ρ̂3(φ ⊗ φ) = 0 in Ricci-flat spacetimes if φ is a solution to the wave equation (5).
Furthermore, for minimal coupling (ξ = 0), we have ρ̂ = ρ̂1.

We quantize the energy density by replacing the classical point-split field φ ⊗ φ by the
normal ordered two-point function :ω�

2 : of some Hadamard state �. As noted before, normal
ordering is always performed with respect to some fixed reference Hadamard state �0. So the
quantized energy density on γ in the state � is simply given by 〈ρquant〉� = [

ρ̂:ω�
2 :

]
c
. Note

that our normal ordered energy density is not the same as the renormalized energy density
〈ρren〉� obtained using the Hadamard prescription (see, e.g., [14]) but they are related by
〈ρquant〉� = 〈ρren〉� − 〈ρren〉�0 .

We end this section with a short summary of the non-minimally coupled scalar quantum
field in the n-dimensional Minkowski space Mn

Mink = (Rn, η). We define the measure dµ(k)

by

dµ(k) = dn−1k
(2π)n−1

1

2ω(k)
, (15)

3 We require γ to be connected, but it does not have to be inextendible.
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with ω(k) =
√

k2 + m2 and use it to define the one-particle Hilbert space by H =
L2(Rn−1, dµ(k)). We will denote the norm and inner product on H by ‖·‖H and 〈·, ·〉H,
and define the bosonic Fock-space Fs(H) in the usual way. Thus, for each g ∈ H, we have an
annihilation operator a(g) and creation operator a†(g) with common domain D((N + 11)1/2),
where N is the number operator on Fs(H), obeying the canonical commutation relations
[a(f ), a†(g)] = 〈f, g〉H11 (recall that g → a(g) is antilinear).

For any compactly supported distribution f ∈ E ′(Mn
Mink

)
, we define f̃ (k) = f̂ (ω(k), k),

with the Fourier transformation convention

f̂ (k) =
∫

dnx eikxf (x). (16)

If f additionally satisfies the property that ‖f̃ ‖H < ∞ and ‖f̃ ‖H < ∞, we can define

�(f ) = a(f̃ ) + a†(f̃ ) (17)

as an operator on D((N +11)1/2). If we restrict to smooth compactly supported f , the operators
�(f ) restricted to ∩∞

k=0D(Nk) generate a representation of Aξ

(
Mn

Mink

)
(for any ξ ).

Formally, we may write

a(g) =
∫

dµ(k)g(k)a(k) and a†(g) =
∫

dµ(k)g(k)a†(k) (18)

with the a(k) and a†(k) satisfying the commutation relations

[a(k), a†(k′)] = (2π)n−12ω(k)δ(k − k′)11, (19)

and the smeared field may be written as

�(f ) =
∫

dnx �(x)f (x), (20)

where

�(x) =
∫

dµ(k)(a(k) e−ikx + a†(k) eikx), (21)

with x = (t, x) and k = (ω(k), k). Expressions of this type can be made rigorous (cf
section X.7 in [15]) and we will make use of this later on.

3. Quantum states with negative energy density

In this section, we consider the massless quantized scalar quantum field with ξ > 0 in a
(3 + 1)-dimensional Minkowski space Mn

Mink. It will be shown that local averages of the
energy density are unbounded from below on the class of Hadamard states.

We start by considering one-particle states �, for which we have the identity

:ω�
2 :(t, x, t ′, x′) = 〈�|:�(t, x)�(t ′, x′):�〉 = 2Re(〈�|�(t, x)�〉〈�|�(t ′, x′)�〉), (22)

as can be shown by writing the fields in terms of annihilation and creation operators. The
expression for the renormalized energy density becomes relatively simple since the differential
operator ρ̂, defined in (14), acting on bi-solutions in Minkowski space is of the form

ρ̂ = 1

2
(∂t ⊗ ∂t ′) +

1

2
(1 − 4ξ)

3∑
b=1

(∂b ⊗ ∂b′) − ξ
((

∂2
t ⊗ 11

)
+

(
11 ⊗ ∂2

t ′
))

. (23)
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So, using (22) we have

〈�|ρquant�〉(t, x) = |∂t 〈�|�(t, x)�〉|2 + (1 − 4ξ)

3∑
b=1

|∂b〈�|�(t, x)�〉|2

− 4ξRe
(〈�|�(t, x)�〉 × ∂2

t 〈�|�(t, x)|�〉). (24)

For κ > 0, we consider (normalized) one-particle states of the form �κ = a†(hκ)�, where
hκ(k) = 4π

√
2(κ − |k|/3) e−|k|/κ/κ2, for which

〈�|�(t, x)�〉 =
∫

dµ(k) e−i(t |k|−xk)hκ(k). (25)

Owing to the rapid decay of hκ,�κ is Hadamard. It has expected energy

〈�κ |H�κ〉 = 2κ

3
. (26)

The functions hκ obey hλκ(k) = hκ(k/λ)/λ, as a consequence of which we have the scaling
relation

〈�λκ |ρquant�λκ〉(x) = λ4〈�κ |ρquant�κ〉(λx). (27)

Evaluating the energy density of the state |�κ〉 at the spatial origin (for example), one finds
that4

〈�κ |ρquant�κ〉(t, 0) = 8κ4

3(1 + t2κ2)5π2
{(3t4κ4 + 3t2κ2) − ξ(18t4κ4 − 44t2κ2 + 2)}, (28)

so, in particular,

〈�κ |ρquant�κ〉(0, 0) = −ξ
(2κ)4

3π2
. (29)

Owing to the continuity of the expected energy density and (29), it follows that to every κ > 0,
there exists a constant τ > 0, such that

〈�κ |ρquant�κ〉(x) � −ξ
(2κ)4

6π2
for all x ∈ B(τ), (30)

where B(τ) is the open ball

B(τ) = {(t, x)|t2 + |x|2 < τ 2}. (31)

Now fix some κ and some appropriate τ . As a consequence of (27) we can find a κ ′ > 0 to
every (arbitrary) τ ′ > 0, such that

〈�κ ′ |ρquant�κ ′ 〉(x) � −ξ
(2κ ′)4

6π2
for all x ∈ B(τ ′). (32)

In particular, we can take κ ′ = κτ/τ ′. We have therefore constructed a Hadamard state with
energy density less than −ξκ4τ 4/(6π2(τ ′)4) on an arbitrary region B(τ ′) (by translational
invariance, the same applies to any other spacetime ball of radius τ ′). The total expected
energy of this state is 2κτ/(3τ ′).

Note that the product of κ ′ and τ ′ is constant. This shows that we may arrange for
large regions of negative energy density albeit with low magnitude. We may extend the
example as follows. Suppose a constant energy density ρ0 > 0 is given, and choose an integer
j > 6π2ρ0/(ξ(κ ′)4). Then the j -particle state �

⊗j

κ ′ = �κ ′ ⊗ · · · ⊗ �κ ′ has energy density〈
�

⊗j

κ ′
∣∣ρquant�

⊗j

κ ′
〉
(x) = j 〈�κ ′ |ρquant�κ ′ 〉(x) < −ρ0 for all x ∈ B(τ ′), (33)

4 The well-known identity
∫ ∞

0 dk kn e−k = n! makes most of the calculations almost trivial.
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and total energy〈
�

⊗j

κ ′
∣∣H�

⊗j

κ ′
〉 = 2jκ ′

3
>

2π2ρ0

ξ(κ ′)3
= (τ ′)3 2π2ρ0

ξκ3τ 3
, (34)

illustrating that the large negative energy density effects also require large positive overall
energy, at least in this example. We will see later that this is a general phenomenon.

Summarizing, we have shown that to any bounded subset O of Minkowski space and
arbitrary constant ρ0 > 0 there is a Hadamard state in which the expected energy density
is less than −ρ0 throughout O. In particular, any smearing ρquant(f) with a non-negative
compactly supported distribution f is unbounded from below on the class of Hadamard states.

4. Quantum energy inequalities

In this section, we are going to derive the main result that is to give a lower bound for time-like
averages of the energy density. We start with a quantum field on a curved spacetime. In a
second step, we specialize these results to Minkowski space, where the vacuum state is the
preferred reference state.

4.1. Globally hyperbolic spacetime

We keep the same assumptions as in section 2; in particular, γ is a time-like, connected
geodesic parameterized by proper time. Our goal is to find a lower bound for the weighted
average of the quantum energy density on γ ,

〈ρquant ◦ γ 〉�(f) =
∫

dτ f(τ )〈ρquant〉�(γ (τ)) (35)

in the case where f = f 2 for some real-valued function f ∈ D(R, R). The main task is to
rewrite (35) in such a way that the lower bound may be deduced by discarding manifestly
positive terms.

To start, we use (14) to get

〈ρquant ◦ γ 〉�(f 2) = ([
ρ̂1:ω�

2 :
]
c
◦ γ

)
(f 2) − ξ

([
ρ̂2:ω�

2 :
]
c
◦ γ

)
(f 2)

+ ξ
([

ρ̂3:ω�
2 :

]
c
◦ γ

)
(f 2). (36)

Each term on the right-hand side will be treated in turn. It will also be useful to define ϕ(τ, τ ′) =
(γ (τ ), γ (τ ′)), and to write ϕ∗F to denote the pullback ϕ∗F(τ, τ ′) = F(γ (τ), γ (τ ′)) of a
smooth function F from M × M to R × R.

The first term on the right-hand side in (36) may then be rewritten, following [5], as([
ρ̂1:ω�

2 :
]
c
◦ γ

)
(f 2) =

∫
dτ f 2(τ )ϕ∗(ρ̂1:ω�

2 :
)
(τ, τ )

=
∫

dτ dτ ′δ(τ − τ ′)f (τ )f (τ ′)ϕ∗(ρ̂1:ω�
2 :

)
(τ, τ ′)

=
∫ ∞

0

dα

π

∫
dτ dτ ′ e−iα(τ−τ ′)f (τ )f (τ ′)ϕ∗(ρ̂1:ω�

2 :
)
(τ, τ ′)

=
∫ ∞

0

dα

π
ϕ∗(ρ̂1:ω�

2 :
)
(fα, fα)

=
∫ ∞

0

dα

π
ϕ∗(ρ̂1ω

�
2

)
(fα, fα) −

∫ ∞

0

dα

π
ϕ∗(ρ̂1ω

0
2

)
(fα, fα), (37)

where fα(τ) = eiατ f (τ ). Here, we have made use of the Fourier representation of the
δ-function and also the symmetry of the normal ordered two-point function to arrange that

7
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the α-integral takes place over the positive half-axis. A decomposition of this kind will be
referred to as a point-splitting trick, see [5]. The distributional pullbacks of the form ϕ∗(ρ̂1ω

�
2

)
appearing in the last step were shown to exist in [5], using the microlocal characterization
of Hadamard states given in [13]. Moreover, if ξ � 1/4 then these distributions are positive
type, i.e., ϕ∗(ρ̂1ω

�
2

)
(ζ , ζ ) � 0 for all ζ ∈ D(R). This is a direct consequence of theorem

2.2 in [5] and the form of ρ̂1. In particular, each integrand in the bottom line in (37) is
non-negative. Finally, the integrals converge, because (as shown in [5]) ϕ∗(ρ̂ω�

2

)
(fα, fα) is

of rapid decay as α → +∞ for any Hadamard state � and partial differential operator ρ̂ with
smooth coefficients.

To treat the second term on the right-hand side in (36), we will need the following identity,
proved in the appendix.

Theorem 4.1. Let F be a smooth function on M × M and ∂ be a partial differential operator
of the form ∂ = ζµ∇µ, with a smooth vector field ζ . Then

2h2[(11 ⊗s ∂2)F ]c + ∂[(11 ⊗s ∂h2)F − (11 ⊗s h2∂)F ]c
= −2[(∂h ⊗s ∂h)F ]c + 2(∂h)2[(11 ⊗s 11)F ]c + 2∂[(h ⊗s ∂h)F ]c, (38)

for h ∈ D(M, R).

Now choose a function fT ∈ D(T , R) such that fT ◦ γ = f . Applying theorem 4.1 with
F = :ω�

2 :, h = fT and ∂ = ζµ∇µ, where ζ is some smooth vector field on M with the property
that ζ |γ = γ̇ , yields the identity

2f 2
T
[(

11 ⊗s ∇2
ζ

)
:ω�

2 :
]
c

+ ∇ζ

[(
11 ⊗s ∇ζ f

2
T
)
:ω�

2 : − (
11 ⊗s f 2

T ∇ζ

)
:ω�

2 :
]
c

= −2
[
(∇ζ fT ⊗s ∇ζ fT ):ω�

2 :
]
c

+ 2f 2
T ∇ζ

[
:ω�

2 :
]
c

+ 2∇ζ

[
(fT ⊗s ∇ζ fT ):ω�

2 :
]
c
.

(39)

All expressions are well defined, since :ω�
2 : is smooth. The first expression on the left-hand

side is nothing but f 2
T
[
ρ̂2:ω�

2 :
]
c
. Let us turn to the other terms. Recalling that τ is the proper

time along γ , we can write∫
dτ

(∇γ̇

[(
11 ⊗s ∇γ̇ f 2

T
)
:ω�

2 :
]
c
◦ γ

)
(τ ) =

∫
dτ ∂τ

([(
11 ⊗s ∇γ̇ f 2

T
)
:ω�

2 :
]
c
◦ γ

)
(τ ), (40)

which vanishes, since fT is of compact support. Further terms in (39) will vanish for the same
reasons after integration. We finally obtain that∫

dτ f 2(τ )
([

ρ̂2:ω�
2 :

]
c
◦ γ

)
(τ ) = 2

∫
dτ(∂τf )2ϕ∗:ω�

2 :(τ, τ )

− 2
∫

dτ
([

(∇γ̇ fT ⊗s ∇γ̇ fT ):ω�
2 :

]
c
◦ γ

)
(τ ). (41)

The second integral on the right-hand side may be rewritten (up to a factor), using the point-
splitting trick, as∫

dτ
([

(∇γ̇ fT ⊗s ∇γ̇ fT ):ω�
2 :

]
c
◦ γ

)
(τ )

=
∫ ∞

0

dα

π

∫
dτ dτ ′ e−iα(τ−τ ′)∂τ ∂τ ′

(
f (τ)f (τ ′)ϕ∗:ω�

2 :(τ, τ ′)
)

=
∫ ∞

0

dα

π
α2

∫
dτ dτ ′fα(τ)fα(τ ′)ϕ∗:ω�

2 :(τ, τ ′)

=
∫ ∞

0

dα

π
α2ϕ∗ω�

2 (fα, fα) −
∫ ∞

0

dα

π
α2ϕ∗ω0

2(fα, fα), (42)

8
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where we have also used integration by parts in τ, τ ′ and the fact that f is of compact support.
As before, the bottom line of (42) is a difference of two non-negative terms.

Finally, let us put the results of (37), (41) and (42) together with the remaining term in
(36).5 We find that

〈ρquant ◦ γ 〉�(f 2) =
∫ ∞

0

dα

π
ϕ∗(ρ̂1ω

�
2

)
(fα, fα) −

∫ ∞

0

dα

π
ϕ∗(ρ̂1ω

0
2

)
(fα, fα)

+ 2ξ

∫ ∞

0

dα

π
α2ϕ∗ω�

2 (fα, fα) − 2ξ

∫ ∞

0

dα

π
α2ϕ∗ω0

2(fα, fα)

− 2ξ

∫
dτ(∂τf )2ϕ∗:ω�

2 :(τ, τ ) + ξ

∫
dτf 2(τ )ϕ∗(ρ̂3:ω�

2 :
)
(τ, τ ), (43)

which, noting that ϕ∗:ω�
2 :(τ, τ ) = 〈:�2: ◦ γ 〉�(τ), results in the following theorem.

Theorem 4.2. Let ω0
2 be the two-point function of a reference Hadamard state for the non-

minimally coupled scalar field with coupling constant ξ ∈ [0, 1/4], defined on a globally
hyperbolic spacetime with smooth metric. Furthermore, let γ be a time-like geodesic
parameterized in proper time τ and let f ∈ D(R, R). On the set of Hadamard states,
we then find

(ρquant ◦ γ )(f 2) � −Qξ (f ), (44)

where

Qξ (f ) = Q̃
ξ

A(f )11 + ξ(:�2: ◦ γ )(QB[f ]) + ξ(:�2: ◦ γ )
(
Q

ξ

C[f ]
)
, (45)

with

Q̃
ξ

A(f ) =
∫ ∞

0

dα

π

[
ϕ∗(ρ̂1ω

0
2

)
(fα, fα) + 2ξα2ϕ∗ω0

2(fα, fα)
]
, (46)

and QB(f ) and Q
ξ

C(f ) are functions in D(R, R) given by

QB[f ](τ ) = 2(∂τf (τ ))2, (47)

Q
ξ

C[f ](τ ) = f (τ)2
(
Rµνγ

µγ ν − 1
2 (1 − 4ξ)R

)
(τ ). (48)

Furthermore, Q̃
ξ

A(f ) and QB[f ] are non-negative.

This result follows from the previous discussion by discarding manifestly positive terms. We
remark that Q̃ξ

A(f ) depends on the reference state and that for ξ = 0, we recover results known
for minimal coupling [5]. Moreover, Q

ξ

C(f ) vanishes if the region of interest is Ricci-flat.

4.2. Minkowski space

In this section, we apply the results derived in the previous subsection to n-dimensional
Minkowski space. Without loss of generality, we average in the time argument τ = t at the
spatial origin, i.e., γ (τ) = (τ, x0). We choose our reference state to be the vacuum state �,
which has a two-point function

ω�
2 (t, x, t ′, x′) =

∫
dµ(k) e−i[(t−t ′)ω(k)−(x−x′)k], (49)

5 We do not apply the point-splitting trick to this term as we cannot necessarily find smooth real square roots of the
geometrical quantities involved.

9
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in the distributional sense. For g ∈ D(R), we find that

ϕ∗ω�
2 (g ⊗ g) = 1

2

Sn−2

(2π)n−1

∫ ∞

0
dk

kn−2

ω(k)
|ĝ(ω(k))|2, (50)

where Sn−2 is the surface area of the (n − 2)-dimensional standard unit sphere6. We also have
the identity

m2ϕ∗ω�
2 (g ⊗ g) +

n−1∑
i=1

ϕ∗((∂i ⊗ ∂i)ω
�
2

)
(g ⊗ g) = ϕ∗((∂0 ⊗ ∂0)ω

�
2

)
(g ⊗ g), (51)

which follows from the spacetime translation invariance of the vacuum and the field
equation (5). So one can absorb the mass term and the spatial derivatives appearing in
the definition of Q̃

ξ

A(f ) (via ρ̂1) into a further term that involves time derivatives. One finds
that (44) becomes

Theorem 4.3. For the non-minimally coupled scalar quantum field in n-dimensional
Minkowski space Mn

Mink,

(ρquant ◦ γ )(f 2) � −Qξ (f ) = −(
Q̃

ξ

A(f )11 + ξ(:�2: ◦ γ )(QB[f ])
)
, (52)

in the sense of quadratic forms on Hadamard states, where

Q̃
ξ

A(f ) = Sn−2

(2π)n

∫ ∞

0
dα

∫ ∞

0
dk

kn−2

ω(k)
((1 − 2ξ)ω2(k) + 2ξα2)|f̂ (α + ω(k))|2 (53)

and

QB[f ](t) = 2(∂tf (t))2 (54)

for f ∈ D(R, R) and ξ ∈ [0, 1/4].

It is easy to see that Q̃
ξ

A(f ) is non-negative for ξ ∈ [0, 1/4] and that Q̃
ξ=0
A (f ) = Q(f ), where

Q(f ) is the lower bound found in [16] for the minimally coupled (ξ = 0) scalar field. As a
consequence, theorem 4.3 recovers the results of [16] for minimal coupling.

We can write Q̃
ξ

A(f ) in the form7

Q̃
ξ

A(f ) = Sn−2

(2π)n

∫ ∞

m

du|f̂ |2(u)un

×
(

1

n
Qn,2

( u

m

)
− 4ξ

1

n − 1
Qn,1

( u

m

)
+ 2ξ

1

n − 2
Qn,0

( u

m

))
, (55)

where the non-negative functions Qn,k are defined by

Qn,k(y) = n + k − 2

yn+k−2

∫ y

1
dx(x2 − 1)(n−3)/2xk, (56)

for n + k � 2. They vanish for k + n = 2 and else have the properties that Qn,k(1) = 0 and
Qn,k(y) → 1 as y → ∞. As they are continuous, they are therefore bounded. It might be
useful to use the following estimate for Q̃

ξ

A(f ), which follows from the previous discussion
for n > 2 and ξ ∈ [0, 1/4],

Q̃
ξ

A(f ) � Sn−2

(2π)n

3n − 4

2n(n − 2)

∫ ∞

0
du|f̂ |2(u)un. (57)

This estimate is true for the massive and the massless case and one can find a similar estimate
for the two-dimensional case.
6 We have Sm = 2

√
πm/�(m/2), where � is the Gamma function.

7 We will assume that n > 2 and m > 0, but one can find similar expressions for these cases as well.
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To conclude this subsection, we investigate the behaviour under rescaling of the averaging
function. The smearing function fλ(t) = f (t/λ)/

√
λ, for λ > 0, has the property that

‖fλ‖L2 = ‖f ‖L2 , and its Fourier transform satisfies the identity

(f̂ λ(u))2 = λ(f̂ (λu))2. (58)

One can conclude from this that Q̃
ξ

A(fλ) = O(λ−n) as λ → ∞. In fact, even faster decay
could be concluded if m > 0 using the arguments of [17]. It follows that λQ̃

ξ

A(fλ) → 0 as
λ → ∞. For states with |〈:�2: ◦ γ 〉�(t)| < c(1 + |t |)1−ε, for some positive constants c, ε one
can show that λ〈:�2: ◦ γ 〉�(QB(fλ)) → 0 as λ → ∞, and we therefore obtain the averaged
weak energy condition (AWEC) for ξ ∈ [0, 1/4] in the form

lim inf
λ→∞

∫
dt〈ρquant ◦ γ 〉�(t)f (t/λ)2 � 0. (59)

This is in line with a result in [18], which shows that AWEC holds for states in which
the particle number and the energy is bounded (see the penultimate paragraph in section III of
[18]). In the minimally coupled case, AWEC is also known to follow from QEIs [16, 19]. We
will return to the AWEC briefly in section 5.2.

5. Investigation of state dependence

The lower bounds that we derived have the characteristic that they are state-dependent except
for minimal coupling. As all previously known QEIs are state-independent, it is important to
understand the nature of the state dependence to ensure that our bounds are not vacuous.

5.1. KMS states and temperature scaling

In this subsection, we analyse the temperature scaling behaviour of the stress–energy tensor
and the bound in theorem 4.3 for a KMS state �β , i.e., a thermal equilibrium state at positive
temperature β−1 as seen by the observer on γ . Its two-point function ω

β

2 in a n-dimensional
Minkowski space, with n > 3, is given by

ω
β

2 (t, x, t ′, x′) =
∫

dµ(k)

(
e−i((t−t ′)ω(k)−(x−x′)k)

1 − e−βω(k)
+

e+i((t−t ′)ω(k)−(x−x′)k)

eβω(k) − 1

)
. (60)

We renormalize the two-point function of the KMS-state by subtracting the two-point function
of the vacuum (49). In the coincidence limit, we find that[

:ωβ

2 :
]
c
(t, x) =

∫
dµ(k)

2

eβω(k) − 1
= Bn,0(βm), (61)

with the positive function Bn,k defined on [0,∞) for k � 0 by

Bn,k(α) = Sn−2

(2π)n−1

∫ ∞

α

dz(z2 − α2)
n−3

2
zk

ez − 1
. (62)

Expression (61) is positive and invariant under spacetime translations. Thus, the state-
dependent part of the lower bound in theorem 4.3 is given by

〈:�2: ◦ γ 〉�β (QB[f ]) = 2β2−nBn,0(βm)‖f ′‖2
L2 , (63)

11
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while the state-independent part Q̃ξ (f ) is obviously independent of β. On the other hand, the
renormalized energy density of this state is

〈ρquant〉�β (t, x) = [
ρ̂:ωβ

2 :
]
c
(t, x)

=
∫

dµ(k)
2ω2(k)

eβω(k) − 1
= β−nBn,2(βm), (64)

so that the time-averaged energy density is given by

〈ρquant ◦ γ 〉�β (f 2) = β−nBn,2(βm)‖f ‖2
L2 . (65)

We can now state the non-triviality result.

Theorem 5.1. The bound for the energy density of a non-minimally coupled scalar quantum
field given in theorem 4.3 is non-trivial in the sense of [9], i.e., there do not exist constants
c, c′ such that

|〈ρquant ◦ γ 〉�(f 2)| � c + c′|〈Qξ (f )〉� | (66)

for all Hadamard states � unless f is identically zero.

Proof. From the previous discussion, we find that for a fixed non-trivial smearing function f ,
in the limit of high temperatures

lim
β→0

βn〈ρquant ◦ γ 〉�β (f 2) = Bn,2(0)‖f ‖2
L2 > 0, (67)

and

lim
β→0

βnQ̃
ξ

A(f ) = lim
β→0

βn〈:�2: ◦ γ 〉�β (QB[f ]) = 0. (68)

Now if the bound in theorem 4.3 is trivial, then there exists some constant c such that (4)
holds. This implies that

0 < Bn,2(0)‖f ‖2
L2 � lim

β→0
βn(c + c′|Q̃ξ

A(f )| + c′|ξ 〈:�2: ◦ γ 〉�β (QB[f ])|) = 0, (69)

which is a contradiction. �

A more refined formulation of this result would be that our bound is non-trivial with respect
to high temperature scaling for KMS states.

5.2. Energy behaviour

The previous results already show that the lower bound in theorem 4.3 has a different scaling
behaviour from the energy density itself. We will now present a more general analysis that
gives more insight into this, again working in four-dimensional Minkowski space M4

Mink.
The lower bound in theorem 4.3 only depends on the fields :�2: and 11. On the other

hand, the energy density also involves terms such as :�̇2:. This results in a crucial difference
in their energy behaviour. To be more precise, we seek values of p, q ∈ R+ for which there
are constants cf,q, c

′
f,p such that

cf,q(H + m11)q � (ρquant ◦ γ )(f 2) � −c′
f,p(H + m11)p (70)

holds (in the sense of quadratic forms) on the set of Hadamard vector states. In the minimally
coupled case, we know that there is a state-independent lower bound so we may take p = 0;
however, for ξ ∈ (0, 1/4] we have already shown that (ρquant ◦ γ )(f 2) is unbounded from
below, so p must be strictly positive if (70) is to hold. By theorem 4.3, it is enough to show

12
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that Qξ (f ) � c′
f,p(H + m11)p to conclude that the right-hand inequality in (70) holds; we will

show that this is possible for any p > 2.
On the other hand, we will show that the left-hand inequality in (70) cannot be satisfied for

q < 3. In this sense, our lower bound represents a non-trivial constraint. Indeed, the situation
here is reminiscent of the sharp Gårding inequalities studied in the theory of pseudodifferential
operators, in which operators with positive classical symbols may be bounded from below
‘with a gain in derivatives’, i.e., by an operator of lower order. Although the analogy is not
direct, it seems worthy of further investigation.

As a consequence of this analysis we immediately obtain another proof of theorem 5.1,
namely that the lower bound in theorem 4.3 is non-trivial in the sense of [9] (but this time
using states in the domain of a power of the Hamiltonian rather than KMS states).

We begin by establishing our claim relating to the left-hand inequality in (70). To do this
we first consider the massless field and construct the following one-particle state:

�κ = 4π

κ

∫
dµ(k) e−|k|/κa†(k)�. (71)

It is straightforward to calculate that 〈Hj 〉�κ
= (

κ
2

)j
(j + 1)! and that8

〈ρquant ◦ γ 〉�κ
(t) = κ4

π2

{
4

1 + t2κ2
− 4ξ

6(t2κ2 − 1)

(1 + t2κ2)4

}
. (72)

We have a peak at t = 0, where the expectation value scales like the fourth power in the
Hamiltonian. However, this pointwise behaviour will not hold for the smeared field. Let us
assume that f is a non-trivial, integrable function. We find that

lim
κ→∞

〈ρquant ◦ γ 〉�κ
(f 2)

〈H 3〉�κ
‖f ‖2

L2

= lim
κ→∞

2κ3(2 + 3ξ)/π

3κ3
= 2(2 + 3ξ)

3π
, (73)

i.e., we have an asymptotic scaling like the expectation value of H 3. In the limit where
κ becomes large, the high momenta are dominant. If the field is massive, the mass would
therefore become negligible. We can deduce that the same scaling behaviour remains true for
the massive field, at least asymptotically. So the smeared energy density for the scalar field in
Minkowski space scales asymptotically at least with the third power of the Hamiltonian, i.e.,
the left-hand inequality in (70) can only hold if q � 3. It is worth remarking that we could
have conducted the same analysis using the one-particle states investigated in section 3, and
with the same result: although the energy density in these states is negative at the spacetime
origin, one may check that the smeared energy density is positive for sufficiently large κ .

The second part of the discussion aims to establish suitable H-bounds on the state-
dependent part of our lower bound, i.e., the field :�2:. H-bounds have been discussed
elsewhere (see, e.g., [20]), but we require more detailed information on the power of the
Hamiltonian involved and on the controlling constants than we have been able to locate in the
literature. The following discussion may therefore be of independent interest.

We will now assume that m > 0, but allow general spacetime dimensions n � 2. Let
h be the one-particle Hamiltonian and d� be the second quantization map (so, for example,
the Hamiltonian is H = d�(h)). Let us initially restrict to the domain DS ⊂ Fs(H),
defined as the space of vectors in Fock space all of whose n-particle wavefunctions are
Schwartz functions and all but finitely many of which vanish identically, see section X.7 in
[15]. This is a dense domain in the Fock space and for every vector � ∈ DS , we find that

8 For the concrete calculation in (72), we assumed for simplicity that the geodesic γ is located at the spatial origin.
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k → ‖a(k)�‖2 ∈ S (Rn−1) and that

‖d�(hp)1/2�‖2 =
∫

dµ(k)ωp(k)‖a(k)�‖2 (74)

for any p ∈ R.
Let g ∈ S (Rn−1) ⊂ H. Then ω−p/2g ∈ H, where ω acts on H by multiplication and the

Cauchy–Schwarz inequality implies that

‖a(g)�‖2 �
∫

dµ(k)dµ(k′)|〈a(k)�|a(k′)�〉||g(k)||g(k′)|

�
{∫

dµ(k)‖a(k)�‖|g(k)|
}2

=
{∫

dµ(k)(ωp/2(k)‖a(k)�‖)|ω−p/2g(k)|
}2

� ‖d�(hp)1/2�‖2 · ‖ω−p/2g‖2
H p ∈ R, (75)

for � ∈ DS . Due to the construction of DS , one can find that DS ⊂ D(Hp) for any p ∈ R.
Now let �(l) ⊂ DS be a l-particle state. We have

(Hp�(l))(k1, . . . , kl ) =
(

l∑
i=1

ω(ki )

)p

�(l)(k1, . . . , kl ), (76)

(d�(hp)�(l))(k1, . . . , kl ) =
l∑

i=1

ωp(ki )�
(l)(k1, . . . , kl ). (77)

For a, b � 0 and p � 1 we find that (a + b)p � ap + bp,9 so(
l∑

i=1

ω(ki )

)p

�
l∑

i=1

ωp(ki ). (79)

This implies that 0 � d�(hp) � Hp on DS for p � 1. Using this, the commutation relations
and (75), we recover H-bounds of the form

‖a(g)�‖2 � ‖Hp/2�‖2 · ‖ω−p/2g‖2
H,

‖a†(g)�‖2 � ‖Hp/2�‖2 · ‖ω−p/2g‖2
H + ‖g‖2

H‖�‖2,
(80)

for p � 1 on DS .
Now define the distribution space,

Lq = {
F ∈ E ′(Mn

Mink

)|‖F‖2
q := ‖ωqF̃‖2

H < ∞}
, (81)

where ‖·‖q is a semi-norm. Since the field is massive we have the inclusion L0 ⊂ Lq for
q � 0. The field �(F) defines an operator on Fock space on the domain D((N + 1)1/2), if

F,F ∈ L0 (or equivalently F̃ , F̃ ∈ H). Since DS ⊂ D((N + 1)1/2),�(F ) is well-defined on
DS .

9 Since the function x → xp−1 is monotone increasing for p � 1, we have

(a + b)p = a(a + b)p−1 + b(a + b)p−1 � ap + bp. (78)
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Now assume p � 1, � ∈ DS and F,F ∈ L0. Using the inequality (u+v)2 � 2(u2 +v2),
we find

‖�(F)�‖2 − ‖�(F)�‖2 � (‖a(F̃ )�‖ + ‖a†(F̃ )�‖)2

� 2‖Hp/2�‖2 · (‖F‖2
−p/2 + ‖F‖2

−p/2

)
+ ‖F‖2

0‖�‖2. (82)

Since this inequality is valid on DS , which was dense in the Fock space Fs(H), this result
extends to all � ∈ D(Hp/2).

In order to apply these results in conjunction with the point-splitting trick, we have to
establish a connection between pulled back two-point functions and their representation in
terms of distributionally smeared fields acting as operators on a certain domain. In particular,
one has to check that for some F(x) = ζ(t) ⊗ δx0(x) with ζ ∈ D(R), we have(

ϕ∗ω�
2

)
(ζ , ζ ) = ‖�(F)�‖2. (83)

The left-hand side is well-defined as discussed before. The right-hand side is well-defined as
F,F ∈ L0. The identity can then be shown by constructing a sequence Fr ∈ D

(
Mn

Mink

)
, with

ω�
2 (Fr, Fr) → (

ϕ∗ω�
2

)
(ζ , ζ ) and F̃r → F̃ = ζ̃ ⊗ δx0 in H.10 The latter property ensures that

�(Fr)� → �
(
ζ ⊗ δx0

)
� and the identity therefore holds because ω�

2 (Fr, Fr) = ‖�(Fr)�‖2

for test functions Fr ∈ D
(
Mn

Mink

)
.

We are now able to apply the above result to find H-bounds on the Wick square, smeared
along the inertial curve γ . Applying the point-splitting trick and (82), we find, for normalized
�, that

〈:�2: ◦ γ 〉�(f 2) =
∫ ∞

0

dα

π

(‖�(
fα ⊗ δx0

)
�‖2 − ‖�(

fα ⊗ δx0

)
�‖2)

� 2‖Hp/2�‖2 ·
∫ ∞

0

dα

π

(∥∥fα ⊗ δx0

∥∥2

−p/2 +
∥∥fα ⊗ δx0

∥∥2
−p/2

)
+ ‖�‖2

∫ ∞

0

dα

π

∥∥fα ⊗ δx0

∥∥2
0

= 2‖Hp/2�‖2 ·
∫ ∞

−∞

dα

π

∥∥fα ⊗ δx0

∥∥2
−p/2 + ‖�‖2

∫ ∞

0

dα

π

∥∥fα ⊗ δx0

∥∥2
0, (84)

where f ∈ D(R, R) and we used (83) with F(x) = f (t) eiαt ⊗ δx0(x). For convenience, let
us introduce the positive quadratic functionals

B−p/2(f ) = 2
∫ ∞

−∞

dα

π

∥∥fα ⊗ δx0

∥∥2
−p/2, (85)

C0(f ) =
∫ ∞

0

dα

π

∥∥fα ⊗ δx0

∥∥2
0. (86)

Lemma 5.2. Let (p + 2) > n, where n is the spacetime dimension, and let f ∈ S (R, R). For
the massive case, C0(f ) < ∞ and B−p/2(f ) < ∞.

Proof. To show that |C0(f )| < ∞, we see that∣∣ ˜fα ⊗ δx0(k)
∣∣2 = |f̂ (ω(k) + α)|2 � c

(m + ω(k) + α)n+1
� 1

(m + α)2

c

ωn−1(k)
, (87)

10 One can do this by defining Fr(t, x) = ζ(t)χr (x), with the approximate identity χr ∈ D(Rn−1).
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for some positive constant c, where we made use of the fact that f is in Schwartz space. It
follows that there exists a constant c′, such that∥∥fα ⊗ δx0

∥∥2
0 � c′

(m + α)2
, (88)

which is integrable in α on R+ proving that C0(f ) < ∞.
To show that |B−p/2(f )| < ∞, realize that there exists a constant c, such that∣∣ ˜fα ⊗ δx0(k)

∣∣2 = |f̂ (ω(k) + α)|2 � c

(m2 + (ω(k) + α)2)
. (89)

Using this inequality, we get∫ ∞

−∞

dα

π

∥∥fα ⊗ δx0

∥∥2
−p/2 �

∫
dµ(k)ω−p(k)

∫ ∞

−∞

dα

π

c

(m2 + (ω(k) + α)2)

<
c

m

∫
dµ(k)ω−p(k), (90)

where we made use of Tonelli’s theorem. The last expression, however, is finite due to the
restriction on p. �

We note that, under the assumptions of lemma 5.2, the quantities in (85) and (86) may be
estimated by similar arguments to those used to obtain (57). Combining inequality (84) and
lemma 5.2, we can now summarize our result as the following H-bound:

Theorem 5.3. Let n be the spacetime dimension, p > (n − 2), f ∈ D(R, R) and
� ∈ D(Hp/2). Then, for normalized �,

〈:�2: ◦ γ 〉�(f 2) � B−p/2(f )‖Hp/2�‖2
+ C0(f )‖�‖2 < ∞. (91)

As an immediate consequence of theorem 5.3, we have the following.

Corollary 5.4. Subject to the assumptions and notation of theorems 4.3 and 5.3, we have

|〈Qξ 〉�(f )| �
(
Q̃

ξ

A(f ) + 2ξC0(∂tf )
)‖�‖2 + 2ξB−p/2(∂tf )‖Hp/2�‖2

. (92)

It follows that there exists a constant c′
f,p for which

(ρquant ◦ γ )(f 2) � Qξ (f ) � −c′
f,p(H + m11)p (93)

as an inequality of quadratic forms for Hadamard vector states �.

In particular, we see that large negative time-averaged energy densities (for a given smearing
function) can only be obtained at large positive overall energies.

As an application of these results, we may again consider the rescaled test function fλ

as in our earlier discussion of the AWEC. One can show that λC0(∂tfλ) and λB−p/2(∂tfλ)

both tend to zero as λ → ∞ (for the allowed values of p) which, together with our earlier
observation that λQ̃

ξ

A(fλ) → 0, yields a proof of AWEC in the form (59) for all Hadamard
vector states (which necessarily belong to the domain of Hp/2).

Now let us return to the four-dimensional case. Our result shows that a bound of the type
(93) can be satisfied for any p > 2 (although we cannot exclude the possibility that it might
also hold for some p � 2). The important point is that our QEI is a non-trivial restriction on
the averaged energy density because the upper bound in (70) cannot be satisfied for any q < 3
(although it can be satisfied for any q > 4 by adapting our H-bound arguments).
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6. Conclusion

Our main results may be summarized as follows. First, we have shown (at least for massless
fields in four-dimensional Minkowski space) that the non-minimally coupled scalar field
with ξ > 0 admits states with arbitrarily large negative energy density over arbitrarily large
bounded spacetime regions. Thus, the non-minimally coupled field cannot obey QEIs of the
type previously studied in the literature, in which there is a state-independent lower bound.
Second, by combining the QEI derivation for the minimally coupled field [5] with techniques
previously applied to the classical non-minimally coupled field [3], we have derived a new
type of QEI with a state-dependent lower bound, for couplings in the range (0, 1/4] in general
globally hyperbolic spacetimes. Third, we have analysed the state-dependence of the bound,
which involves the Wick square of the field, rather than the Wick powers of its derivatives that
appear in the energy density. This involved the formulation of various H-bounds, which may
be of independent interest. Roughly speaking, the results of this analysis tell us that the lower
bound scales more softly with the overall energy scale than the energy density itself. Thus,
we may conclude that negative energy effects with large magnitude, while possible over large
regions, require more energy to achieve than positive energy densities of the same magnitude
and that the ‘energy budget’ for these two effects will grow with a different power.

In the light of our results, it seems reasonable to expect that generic interacting quantum
fields will not obey state-independent QEIs, as has also been argued on physical grounds for a
particular model in [21]. The state-independent QEIs that have been found for other free fields
and conformal fields in two dimensions (see [22]) should therefore be regarded as particularly
simple cases. In general, then, the aim should be to establish non-trivial state-dependent
bounds. Suitable generalizations of our H-bounds to higher order Wick polynomials may be
useful in this context.

It also becomes important to understand whether one can draw useful physical conclusions
from state-dependent QEIs. For example, the state-independent QEIs have been used to place
constraints on exotic spacetimes [23–26] and are linked to questions of thermodynamic stability
[27, 28]. A first indication that state-dependent bounds can be used for similar purposes may
be found in our derivation of AWEC. In general, we expect that similar results will obtain
for state-dependent bounds, once one restricts to states of a given energy scale. Likewise, we
would expect the phenomenon of quantum interest [29, 30] to be governed by the energy scale
in this context. Finally, our general QEI is of the so-called ‘difference’ type: it constrains
the normal ordered energy density rather than the (Hadamard) renormalized version. This
restriction has recently been removed for the minimally coupled field in [31] to obtain an
‘absolute’ QEI; one would expect that this can also be adapted to the non-minimally coupled
field.

Appendix. Proof of theorem 4.1

Throughout the appendix [·]c denotes the ‘coincidence limit’, i.e., the diagonal of smooth
functions on M × M , but for the sake of clarity, we will omit the arguments.

Proof of theorem 4.1. First, we look at the top line in (38). To make the calculations clearer,
we start by calculating the expression without the symmetric product. We know by Synge’s
theorem that

∂[F ]c = [(∂ ⊗ 11)F ]c + [(11 ⊗ ∂)F ]c, (A.1)
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where F is a smooth function on M × M , so

∂[(11 ⊗ ∂h2)F − (11 ⊗ h2∂)F ]c
= [(∂ ⊗ ∂h2)F + (11 ⊗ ∂2h2)F ]c − [(∂ ⊗ h2∂)F + (11 ⊗ ∂h2∂)F ]c
= [(∂ ⊗ (∂h2))F + (∂ ⊗ h2∂)F ]c

+ [(11 ⊗ (∂2h2))F + 2(11 ⊗ (∂h2)∂)F + (11 ⊗ h2∂2)F ]c
− [(∂ ⊗ h2∂)F ]c − [(11 ⊗ (∂h2)∂)F + (11 ⊗ h2∂2)F ]c

= 2(∂h2)[(11 ⊗s ∂)F ]c + (∂2h2)[(11 ⊗ 11)F ]c. (A.2)

Where we want to emphasize that there is a symmetric product in the last line. Now it is quite
obvious that the same calculation is valid if one exchanges the arguments of F. Thus, adding
the term 2h2[(11 ⊗s ∂2)F ]c on both sides, we find the following identity for the symmetrized
expression:

2h2[(11 ⊗s ∂2)F ]c + ∂[(11 ⊗s ∂h2)F − (11 ⊗s h2∂)F ]c
= 2h2[(11 ⊗s ∂2)F ]c + 2(∂h2)[(11 ⊗s ∂)F ]c + (∂2h2)[(11 ⊗s 11)F ]c. (A.3)

Here the top line is obviously identical with the expression in the top line of (38).
Now let us do the analogous calculations for the bottom line in (38). As before, we start

for clarity without the symmetric product

2∂[(h ⊗ ∂h)F ]c − 2[(∂h ⊗ ∂h)F ]c + 2(∂h)2[(11 ⊗ 11)F ]c
= 2[(∂h ⊗ ∂h)F + (h ⊗ ∂2h)F ]c − 2[(∂h ⊗ ∂h)F ]c + 2(∂h)2[(11 ⊗ 11)F ]c
= 2h[(11 ⊗ (∂2h))F + 2(11 ⊗ (∂h)∂)F + (11 ⊗ h∂2)F ]c + 2(∂h)2[(11 ⊗ 11)F ]c
= 2h2[(11 ⊗ ∂2)F ]c + 2(2h∂h)[(11 ⊗ ∂)F ]c + (2h∂2h + 2(∂h)2)[(11 ⊗ 11)F ]c
= 2h2[(11 ⊗ ∂2)F ]c + 2(∂h2)[(11 ⊗ ∂)F ]c + (∂2h2)[(11 ⊗ 11)F ]c. (A.4)

Again, if we symmetrize this, we get

2∂[(h ⊗s ∂h)F ]c − 2[(∂h ⊗s ∂h)F ]c + 2(∂h)2[(11 ⊗s 11)F ]c
= 2h2[(11 ⊗s ∂2)F ]c + 2(∂h2)[(11 ⊗s ∂)F ]c + (∂2h2)[(11 ⊗s 11)F ]c. (A.5)

Comparing the bottom row of (A.5) with the bottom row of (A.3) proves the theorem. �
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19

http://dx.doi.org/10.1007/BF02100096
http://dx.doi.org/10.1103/PhysRevD.17.1477
http://dx.doi.org/10.1103/PhysRevD.58.084010
http://dx.doi.org/10.1063/1.2779137
http://dx.doi.org/10.1103/PhysRevD.43.2542
http://dx.doi.org/10.1103/PhysRevD.51.4277
http://dx.doi.org/10.1007/BF01941663
http://dx.doi.org/10.1016/S0370-2693(03)00011-X
http://dx.doi.org/10.1142/S0129055X05002406
http://dx.doi.org/10.1088/0264-9381/14/7/011
http://dx.doi.org/10.1103/PhysRevD.53.5496
http://dx.doi.org/10.1103/PhysRevD.72.044023
http://dx.doi.org/10.1103/PhysRevD.56.2100
http://dx.doi.org/10.1007/s00220-003-0884-7
http://dx.doi.org/10.1103/PhysRevD.60.104018
http://dx.doi.org/10.1103/PhysRevD.61.084012
http://www.arxiv.org/abs/gr-qc/0702056

	1. Introduction
	2. The non-minimally coupled field
	3. Quantum states with negative energy density
	4. Quantum energy inequalities
	4.1. Globally hyperbolic spacetime
	4.2. Minkowski space

	5. Investigation of state dependence
	5.1. KMS states and temperature scaling
	5.2. Energy behaviour

	6. Conclusion
	Appendix. Proof of theorem 4.1
	References

